Modelling Electricity Price Expectations in a Day-Ahead Market: A Case of Latvia

Authors

  • Viktorija Bobinaite University of Latvia
  • Jānis Zuters University of Latvia

DOI:

https://doi.org/10.1515/eb-2016-0017

Keywords:

Adaptive expectations, electricity, neural network, price, production decision making, profit

Abstract

The paper aims at modelling the electricity generator’s expectations about price development in the Latvian day-ahead electricity market. Correlation and sensitivity analysis methods are used to identify the key determinants of electricity price expectations. A neural network approach is employed to model electricity price expectations. The research results demonstrate that electricity price expectations depend on the historical electricity prices. The price a day ago is the key determinant of price expectations and the importance of the lagged prices reduces as the time backwards lengthens. Nine models of electricity price expectations are prepared for different natural seasons and types of the day. The forecast accuracy of models varies from high to low, since errors are 7.02 % to 59.23 %. The forecasting power of models for weekends is reduced; therefore, additional determinants of electricity price expectations should be considered in the models and advanced input selection algorithms should be applied in future research. Electricity price expectations affect the generator’s loss through the production decisions, which are made considering the expected (forecasted) prices. The models allow making the production decision at a sufficient level of accuracy.

References

Abedinia, O., Amjady, N., Shafie-khah, M. & Catalão J. P. S. (2015). Electricity price forecast using Combinatorial Neural Network trained by a new stochastic search method. Energy Conversion and Management , 105, 642–654. http://dx.doi.org/10.1016/j.enconman.2015.08.025

Aggarwal, S. K., Saini, L. M. & Kumar, A. (2009). Electricity price forecasting in deregulated markets: A review and evaluation. International Journal of Electrical Power & Energy Systems , 31 (1), 13–22. http://dx.doi.org/10.1016/j.ijepes.2008.09.003

Al-Shakhs, M. & El-Hawary, M. (2015). Innovations-based Neural Network Seasonal Day-ahead Marginal Price Forecasting. Electric Power Components and Systems , 43 (5), 588–593. http://dx.doi.org/10.1080/15325008.2014.995279

Amjady, N. & Keynia, F. (2009). Day-ahead price forecasting of electricity markets by a new feature selection algorithm and cascaded neural network technique. Energy Conversion and Management , 50 (12), 2976–2982. http://dx.doi.org/10.1016/j.enconman.2009.07.016

Anbazhagan, S. & Kumarappan, N. (2014). Day-ahead deregulated electricity market price forecasting using neural network input featured by DCT. Energy Conversion and Management , 78 , 711–719. http://dx.doi.org/10.1016/j.enconman.2013.11.031

Anderson, D. R., Sweeney, D. J., Williams, T., Camm, J. D. & Martin, K. (2009). Quantitative Methods for Business . South-Western Cengage Learning.

Armstrong, J. S. & Green, K. C. (2010). Demand Forecasting: Evidence-Based Methods. Retrieved August 5, 2011, from http://kestencgreen.com/demandfor.pdf

Bartkienė, A. (1993). Rinkos kainų politika ir kainodara . Valstybinis leidybos centras. Vilnius.

Bartosevičienė, V. (2001). Ekonominė statistika . Technologija. Kaunas.

Binder, C. C. (2016). Estimation of historical inflation expectations. Explorations in Economic History, 61, 1–31. http://dx.doi.org/10.1016/j.eeh.2016.01.002

BN Vocabulary (2016). Expectations. Retrieved January 25, 2016, from http://zodynas.vz.lt/Lukesciai

Bobinaitė, V. & Konstantinavičiūtė, I. (2012). Wholesale electricity price forecasting models: Lithuanian case. The 7th international conference on electrical and control technologies ECT-2012, Kaunas, Lithuania, May 3–4, 2012. Kaunas: Technologija, 2012. ISSN 1822-5934, p. 249–254.

Bonacina, M. & Gulli, F. (2007). Electricity pricing under “carbon emissions trading”: A dominant firm with competitive fringe model. Energy Policy , 35 (8), 4200–4220. http://dx.doi.org/10.1016/j.enpol.2007.02.016

Catalão, J. P. S., Mariano, S. J. P. S., Mendes, V. M. F. & Ferreira, L. A. F. M. (2007). Short-term electricity prices forecasting in a competitive market: A neural network approach. Electric Power Systems Research , 77 (10), 1297–1304. http://dx.doi.org/10.1016/j.epsr.2006.09.022

Chen, S. & Billings, S. A. (1992). Neural networks for nonlinear dynamic system modelling and identification. International Journal of Control , 56 (2), 319–346. http://dx.doi.org/10.1080/00207179208934317

Chogumaira, E. N. & Hiyama, T. (2011). Short-Term Electricity Price Forecasting Using a Combination of Neural Networks and Fuzzy Inference. Energy and Power Engineering , 3, 9–16. http://dx.doi.org/10.4236/epe.2011.31002

Chow, G. C. (2011). Usefulness of Adaptive and Rational Expectations in Economics. CEPS Working paper 221. Retrieved January 20, 2016, from https://www.princeton.edu/~gchow/Usefulness%20of%20%20Adaptive%20and%20Rational%20Expectations%20in%20Economics%20(2).pdf

Conejo, A. J., Javier Contreras, J., Espínola, R. & Plazas, M. A. (2005). Forecasting electricity prices for a day-ahead pool-based electric energy market. International Journal of Forecasting , 21(3) , 435–462. http://dx.doi.org/10.1016/j.ijforecast.2004.12.005

Cuaresma, J. C., Hlouskova, J., Kossmeier, S. & Obersteiner M. (2004). Forecasting electricity spot-prices using linear univariate time-series models. Applied Energy , 77 (1), 87–106. http://dx.doi.org/10.1016/S0306-2619(03)00096-5

de Menil, G. & Bhalla, S. (1973). Direct Measurement of Popular Price Expectations. Econometric Research Program, Research Memorandum No. 149. Retrieved February 5, 2016, from https://www.princeton.edu/~erp/ERParchives/archivepdfs/M149.pdf

Demery, D. & Duck, N. W. (2007). The theory of rational expectations and the interpretation of macroeconomic data. Journal of Macroeconomics , 29 (1), 1–18. http://dx.doi.org/10.1016/j.jmacro.2005.02.005

Dev, P. & Martin, M. A. (2014). Using neural networks and extreme value distributions to model electricity pool prices: Evidence from the Australian National Electricity Market 1998–2013. Energy Conversion and Management , 84 , 122–132. http://dx.doi.org/10.1016/j.enconman.2014.04.012

EEX (2016). Market data of European Emission Allowances. Retrieved March 10, 2016, from https://www.eex.com/en/market-data/emission-allowances/spot-market/european-emission-allowances#!/2016/03/10

Evans, G. W. & Ramey, G. (2006). Adaptive Expectations, Underparameterization and the Lucas Critique. Journal of Monetary Economics , 53 (2), 249–264. http://dx.doi.org/10.1016/j.jmoneco.2004.12.002

Ezekiel, M. (1938). The Cobweb Theorem. The Quarterly Journal of Economics , 52 (2), 255–280. Retrieved February 5, 2016, from http://harvey.binghamton.edu/~polachek/econ_360/Ezekiel%20QJE%201938%20COBWEB.pdf

Goodwin, R. M. (1947). Dynamical Coupling with Especial Reference to Markets Having Production Lags. Econometrica , 15 (3), 181–204. http://dx.doi.org/10.2307/1905478

Janeliūnas, T. & Kasčiūnas, L. (2007). Prognozavimo metodų taikymas politikos moksluose. Politologija. 3 (47), 3–43.

Johnson, M. D., Anderson, E. W. & Fornell, C. (1995). Rational and Adaptive Performance Expectations in a Customer Satisfaction Framework. Journal of Consumer Research , 21 (4), 695–707. http://dx.doi.org/10.1086/209428

Keles, D., Scelle, J., Paraschiv, F. & Fichtner, W. (2016). Extended forecast methods for day-ahead electricity spot prices applying artificial neural networks. Applied Energy , 162 , 218–230. http://dx.doi.org/10.1016/j.apenergy.2015.09.087

Keynia, F. (2012). A new feature selection algorithm and composite neural network for electricity price forecasting. Engineering Applications of Artificial Intelligence , 25 (8), 1687–1697. http://dx.doi.org/10.1016/j.engappai.2011.12.001

Knoll, L. & Engels, A. (2012). Exploring the Linkages between Carbon markets and Sustainable Innovations in the Energy Sector: Lessons from the EU Emissions Trading Scheme. Sustainability Innovations in the Electricity Sector . Springer-Verlag Berlin Heidelberg. http://dx.doi.org/10.1007/978-3-7908-2730-9_6

Konstantinaviciute, I. & Bobinaite, V. (2015). Comparative analysis of carbon dioxide emission factors for energy industries in European Union countries. Renewable and Sustainable Energy Reviews , 51 , 603–612. http://dx.doi.org/10.1016/j.rser.2015.06.058

Lin, W.-M., Gow, H.-J. & Tsai, M.-T. (2010). Electricity price forecasting using Enhanced Probability Neural Network. Energy Conversion and Management , 51 (12), 2707–2714 http://dx.doi.org/10.1016/j.enconman.2010.06.006

Lise, W. & Kruseman, G. (2008). Long–term price and environmental effects in a liberalised electricity market. Energy Economics , 30 (2), 230–248. http://dx.doi.org/10.1016/j.eneco.2006.06.005

Lithuanian District Heating Association (2013). Šilumos tiekimo bendrovių 2012 metų ūkinės veiklos apžvalga . Vilnius.

Lucas, R. E. (1976). Econometric Policy Evaluation: A Critique. Carnegie-Rochester Conference Series on Public Policy, 1 , 19–46. http://dx.doi.org/10.1016/S0167-2231(76)80003-6

Mlambo, L. (2012). Adaptive and rational expectations hypotheses: reviewing the critiques. Journal of Economic Behavior , 2 , 3–15. http://ijeb.faa.ro/download/459_MLAMBO.pdf

Moreno, M. J. J., Palmer, P. A. & Muñoz Gracia, P. (2011). Artificial neural networks applied to forecasting time series. Psicothema , 23 (2), 322–329. http://www.psicothema.com/pdf/3889.pdf

Muller, B., Reinhardt, J. & Strickland, M. T. (1995). Neural Networks: An Introduction . 2nd updated and corrected edition. Springer-Verlag Berlin Heidelberg. http://dx.doi.org/10.1007/978-3-642-57760-4

Muth, J. F. (1961). Rational Expectations and the Theory of Price Movements. Econometrica , 29 (3), 315–335. http://dx.doi.org/10.2307/1909635

Nerlove, M. (1958). Adaptive Expectations and Cobweb Phenomena. Journal of Economics , 73 , 227–240. http://dx.doi.org/10.2307/1880597

Nord Pool Spot (2016). Historical market data. Retrieved January 15 to March 16, 2016, from http://www.nordpoolspot.com/historical-market-data/

Panapakidis, I. P. & Dagoumas, A. S. (2016). Day-ahead electricity price forecasting via the application of artificial neural network based models. Applied Energy , 172 , 132–151. http://dx.doi.org/10.1016/j.apenergy.2016.03.089

Panchal, G., Ganatra, A., Kosta, Y. P. & Panchal, D. (2011). Behaviour Analysis of Multilayer Perceptrons with Multiple Hidden Neurons and Hidden Layers. International Journal of Computer Theory and Engineering , 3 (2), 332–337. http://dx.doi.org/10.7763/IJCTE.2011.V3.328

Pearce, D. K. (1975). The Measurement of Price Expectations. Journal of Behavioral Economics , 4 (1), 145–165. http://dx.doi.org/10.1016/0090-5720(75)90030-3

Sargent, T. J. (2008). Rational Expectations. The Concise Encyclopedia of Economics , 2nd ed. Retrieved February 6, 2016, from http://www.econlib.org/library/Enc/RationalExpectations.html

Schlueter, S. (2010). A long–term/short–term model for daily electricity prices with dynamic volatility. Energy Economics , 32 (5), 1074–1081. http://dx.doi.org/10.1016/j.eneco.2010.06.008

Schwarz, H. G. & Lang, Ch. (2006). The rise in German wholesale electricity prices: fundamental factors, exercise of market power, or both? IWE Working Paper No. 2. Institute of Economics.

Shahram Fattahi Gakieh, M. A. (2008). Modeling Inflation Expectations: The Case of Iran. Retrieved February 10, 2016, from http://sundoc.bibliothek.uni-halle.de/diss-online/08/08H147/t1.pdf

Shepherd, B. (2012). When are adaptive expectations rational? A generalization. Economics Letters , 115 (1), 4–6. http://dx.doi.org/10.1016/j.econlet.2011.11.017

Singhal, D. & Swarup, K. S. (2011). Electricity price forecasting using artificial neural networks. International Journal of Electrical Power & Energy Systems , 33 (3), 550–555. http://dx.doi.org/10.1016/j.ijepes.2010.12.009

Skribans, V. & Balodis, M. (2016). Development of the Latvian energy sector competitiveness system dynamic model. 9th International Scientific Conference “Business and Management 2016”, Vilnius, Lithuania, May 12–13, 2016. Vilnius Gediminas Technical University, 2016. http://dx.doi.org/10.3846/bm.2016.12

Tan, Z., Zhang, J., Wang, J. & Xu, J. (2010). Day–ahead electricity price forecasting using wavelet transform combined with ARIMA and GARCH models. Applied Energy , 87 (11), 3606–3610. http://dx.doi.org/10.1016/j.apenergy.2010.05.012

Tanaka, M. (2009). Transmission–constrained oligopoly in the Japanese electricity market. Energy Economics , 31 (5), 690–701. http://dx.doi.org/10.1016/j.eneco.2009.03.004

Thiemer, A. (2007). Cobweb Models and Expectations. Retrieved February 10, 2016, from https://www.fh-kiel.de/fileadmin/data/wirtschaft/Dozenten/Thiemer__Andreas/MCD/cobweb_e.pdf

Vahidinasab, V., Jadid, S. & Kazemi, A. (2008). Day-ahead price forecasting in restructured power systems using artificial neural networks. Electric Power Systems Research , 78 (8), 1332–1342. http://dx.doi.org/10.1016/j.epsr.2007.12.001

Weron, R. & Misiorek, A. (2008). Forecasting Spot Electricity Prices: A Comparison of Parametric and Semiparametric Time Series Models. International Journal of Forecasting , 24 , 744–763. http://dx.doi.org/10.1016/j.ijforecast.2008.08.004

Weron, R. (2014). Electricity price forecasting: A review of the state-of-the-art with a look into the future. International Journal of Forecasting , 30 (4), 1030–1081. http://dx.doi.org/10.1016/j.ijforecast.2014.08.008

Downloads

Published

01.08.2016

How to Cite

Bobinaite, V., & Zuters, J. (2016). Modelling Electricity Price Expectations in a Day-Ahead Market: A Case of Latvia. Economics and Business, 29(1), 12-26. https://doi.org/10.1515/eb-2016-0017