Modelling Electricity Price Expectations in a Day-Ahead Market: A Case of Latvia
DOI:
https://doi.org/10.1515/eb-2016-0017Keywords:
Adaptive expectations, electricity, neural network, price, production decision making, profitAbstract
The paper aims at modelling the electricity generator’s expectations about price development in the Latvian day-ahead electricity market. Correlation and sensitivity analysis methods are used to identify the key determinants of electricity price expectations. A neural network approach is employed to model electricity price expectations. The research results demonstrate that electricity price expectations depend on the historical electricity prices. The price a day ago is the key determinant of price expectations and the importance of the lagged prices reduces as the time backwards lengthens. Nine models of electricity price expectations are prepared for different natural seasons and types of the day. The forecast accuracy of models varies from high to low, since errors are 7.02 % to 59.23 %. The forecasting power of models for weekends is reduced; therefore, additional determinants of electricity price expectations should be considered in the models and advanced input selection algorithms should be applied in future research. Electricity price expectations affect the generator’s loss through the production decisions, which are made considering the expected (forecasted) prices. The models allow making the production decision at a sufficient level of accuracy.References
Abedinia, O., Amjady, N., Shafie-khah, M. & Catalão J. P. S. (2015). Electricity price forecast using Combinatorial Neural Network trained by a new stochastic search method. Energy Conversion and Management , 105, 642–654. http://dx.doi.org/10.1016/j.enconman.2015.08.025
Aggarwal, S. K., Saini, L. M. & Kumar, A. (2009). Electricity price forecasting in deregulated markets: A review and evaluation. International Journal of Electrical Power & Energy Systems , 31 (1), 13–22. http://dx.doi.org/10.1016/j.ijepes.2008.09.003
Al-Shakhs, M. & El-Hawary, M. (2015). Innovations-based Neural Network Seasonal Day-ahead Marginal Price Forecasting. Electric Power Components and Systems , 43 (5), 588–593. http://dx.doi.org/10.1080/15325008.2014.995279
Amjady, N. & Keynia, F. (2009). Day-ahead price forecasting of electricity markets by a new feature selection algorithm and cascaded neural network technique. Energy Conversion and Management , 50 (12), 2976–2982. http://dx.doi.org/10.1016/j.enconman.2009.07.016
Anbazhagan, S. & Kumarappan, N. (2014). Day-ahead deregulated electricity market price forecasting using neural network input featured by DCT. Energy Conversion and Management , 78 , 711–719. http://dx.doi.org/10.1016/j.enconman.2013.11.031
Anderson, D. R., Sweeney, D. J., Williams, T., Camm, J. D. & Martin, K. (2009). Quantitative Methods for Business . South-Western Cengage Learning.
Armstrong, J. S. & Green, K. C. (2010). Demand Forecasting: Evidence-Based Methods. Retrieved August 5, 2011, from http://kestencgreen.com/demandfor.pdf
Bartkienė, A. (1993). Rinkos kainų politika ir kainodara . Valstybinis leidybos centras. Vilnius.
Bartosevičienė, V. (2001). Ekonominė statistika . Technologija. Kaunas.
Binder, C. C. (2016). Estimation of historical inflation expectations. Explorations in Economic History, 61, 1–31. http://dx.doi.org/10.1016/j.eeh.2016.01.002
BN Vocabulary (2016). Expectations. Retrieved January 25, 2016, from http://zodynas.vz.lt/Lukesciai
Bobinaitė, V. & Konstantinavičiūtė, I. (2012). Wholesale electricity price forecasting models: Lithuanian case. The 7th international conference on electrical and control technologies ECT-2012, Kaunas, Lithuania, May 3–4, 2012. Kaunas: Technologija, 2012. ISSN 1822-5934, p. 249–254.
Bonacina, M. & Gulli, F. (2007). Electricity pricing under “carbon emissions trading”: A dominant firm with competitive fringe model. Energy Policy , 35 (8), 4200–4220. http://dx.doi.org/10.1016/j.enpol.2007.02.016
Catalão, J. P. S., Mariano, S. J. P. S., Mendes, V. M. F. & Ferreira, L. A. F. M. (2007). Short-term electricity prices forecasting in a competitive market: A neural network approach. Electric Power Systems Research , 77 (10), 1297–1304. http://dx.doi.org/10.1016/j.epsr.2006.09.022
Chen, S. & Billings, S. A. (1992). Neural networks for nonlinear dynamic system modelling and identification. International Journal of Control , 56 (2), 319–346. http://dx.doi.org/10.1080/00207179208934317
Chogumaira, E. N. & Hiyama, T. (2011). Short-Term Electricity Price Forecasting Using a Combination of Neural Networks and Fuzzy Inference. Energy and Power Engineering , 3, 9–16. http://dx.doi.org/10.4236/epe.2011.31002
Chow, G. C. (2011). Usefulness of Adaptive and Rational Expectations in Economics. CEPS Working paper 221. Retrieved January 20, 2016, from https://www.princeton.edu/~gchow/Usefulness%20of%20%20Adaptive%20and%20Rational%20Expectations%20in%20Economics%20(2).pdf
Conejo, A. J., Javier Contreras, J., Espínola, R. & Plazas, M. A. (2005). Forecasting electricity prices for a day-ahead pool-based electric energy market. International Journal of Forecasting , 21(3) , 435–462. http://dx.doi.org/10.1016/j.ijforecast.2004.12.005
Cuaresma, J. C., Hlouskova, J., Kossmeier, S. & Obersteiner M. (2004). Forecasting electricity spot-prices using linear univariate time-series models. Applied Energy , 77 (1), 87–106. http://dx.doi.org/10.1016/S0306-2619(03)00096-5
de Menil, G. & Bhalla, S. (1973). Direct Measurement of Popular Price Expectations. Econometric Research Program, Research Memorandum No. 149. Retrieved February 5, 2016, from https://www.princeton.edu/~erp/ERParchives/archivepdfs/M149.pdf
Demery, D. & Duck, N. W. (2007). The theory of rational expectations and the interpretation of macroeconomic data. Journal of Macroeconomics , 29 (1), 1–18. http://dx.doi.org/10.1016/j.jmacro.2005.02.005
Dev, P. & Martin, M. A. (2014). Using neural networks and extreme value distributions to model electricity pool prices: Evidence from the Australian National Electricity Market 1998–2013. Energy Conversion and Management , 84 , 122–132. http://dx.doi.org/10.1016/j.enconman.2014.04.012
EEX (2016). Market data of European Emission Allowances. Retrieved March 10, 2016, from https://www.eex.com/en/market-data/emission-allowances/spot-market/european-emission-allowances#!/2016/03/10
Evans, G. W. & Ramey, G. (2006). Adaptive Expectations, Underparameterization and the Lucas Critique. Journal of Monetary Economics , 53 (2), 249–264. http://dx.doi.org/10.1016/j.jmoneco.2004.12.002
Ezekiel, M. (1938). The Cobweb Theorem. The Quarterly Journal of Economics , 52 (2), 255–280. Retrieved February 5, 2016, from http://harvey.binghamton.edu/~polachek/econ_360/Ezekiel%20QJE%201938%20COBWEB.pdf
Goodwin, R. M. (1947). Dynamical Coupling with Especial Reference to Markets Having Production Lags. Econometrica , 15 (3), 181–204. http://dx.doi.org/10.2307/1905478
Janeliūnas, T. & Kasčiūnas, L. (2007). Prognozavimo metodų taikymas politikos moksluose. Politologija. 3 (47), 3–43.
Johnson, M. D., Anderson, E. W. & Fornell, C. (1995). Rational and Adaptive Performance Expectations in a Customer Satisfaction Framework. Journal of Consumer Research , 21 (4), 695–707. http://dx.doi.org/10.1086/209428
Keles, D., Scelle, J., Paraschiv, F. & Fichtner, W. (2016). Extended forecast methods for day-ahead electricity spot prices applying artificial neural networks. Applied Energy , 162 , 218–230. http://dx.doi.org/10.1016/j.apenergy.2015.09.087
Keynia, F. (2012). A new feature selection algorithm and composite neural network for electricity price forecasting. Engineering Applications of Artificial Intelligence , 25 (8), 1687–1697. http://dx.doi.org/10.1016/j.engappai.2011.12.001
Knoll, L. & Engels, A. (2012). Exploring the Linkages between Carbon markets and Sustainable Innovations in the Energy Sector: Lessons from the EU Emissions Trading Scheme. Sustainability Innovations in the Electricity Sector . Springer-Verlag Berlin Heidelberg. http://dx.doi.org/10.1007/978-3-7908-2730-9_6
Konstantinaviciute, I. & Bobinaite, V. (2015). Comparative analysis of carbon dioxide emission factors for energy industries in European Union countries. Renewable and Sustainable Energy Reviews , 51 , 603–612. http://dx.doi.org/10.1016/j.rser.2015.06.058
Lin, W.-M., Gow, H.-J. & Tsai, M.-T. (2010). Electricity price forecasting using Enhanced Probability Neural Network. Energy Conversion and Management , 51 (12), 2707–2714 http://dx.doi.org/10.1016/j.enconman.2010.06.006
Lise, W. & Kruseman, G. (2008). Long–term price and environmental effects in a liberalised electricity market. Energy Economics , 30 (2), 230–248. http://dx.doi.org/10.1016/j.eneco.2006.06.005
Lithuanian District Heating Association (2013). Šilumos tiekimo bendrovių 2012 metų ūkinės veiklos apžvalga . Vilnius.
Lucas, R. E. (1976). Econometric Policy Evaluation: A Critique. Carnegie-Rochester Conference Series on Public Policy, 1 , 19–46. http://dx.doi.org/10.1016/S0167-2231(76)80003-6
Mlambo, L. (2012). Adaptive and rational expectations hypotheses: reviewing the critiques. Journal of Economic Behavior , 2 , 3–15. http://ijeb.faa.ro/download/459_MLAMBO.pdf
Moreno, M. J. J., Palmer, P. A. & Muñoz Gracia, P. (2011). Artificial neural networks applied to forecasting time series. Psicothema , 23 (2), 322–329. http://www.psicothema.com/pdf/3889.pdf
Muller, B., Reinhardt, J. & Strickland, M. T. (1995). Neural Networks: An Introduction . 2nd updated and corrected edition. Springer-Verlag Berlin Heidelberg. http://dx.doi.org/10.1007/978-3-642-57760-4
Muth, J. F. (1961). Rational Expectations and the Theory of Price Movements. Econometrica , 29 (3), 315–335. http://dx.doi.org/10.2307/1909635
Nerlove, M. (1958). Adaptive Expectations and Cobweb Phenomena. Journal of Economics , 73 , 227–240. http://dx.doi.org/10.2307/1880597
Nord Pool Spot (2016). Historical market data. Retrieved January 15 to March 16, 2016, from http://www.nordpoolspot.com/historical-market-data/
Panapakidis, I. P. & Dagoumas, A. S. (2016). Day-ahead electricity price forecasting via the application of artificial neural network based models. Applied Energy , 172 , 132–151. http://dx.doi.org/10.1016/j.apenergy.2016.03.089
Panchal, G., Ganatra, A., Kosta, Y. P. & Panchal, D. (2011). Behaviour Analysis of Multilayer Perceptrons with Multiple Hidden Neurons and Hidden Layers. International Journal of Computer Theory and Engineering , 3 (2), 332–337. http://dx.doi.org/10.7763/IJCTE.2011.V3.328
Pearce, D. K. (1975). The Measurement of Price Expectations. Journal of Behavioral Economics , 4 (1), 145–165. http://dx.doi.org/10.1016/0090-5720(75)90030-3
Sargent, T. J. (2008). Rational Expectations. The Concise Encyclopedia of Economics , 2nd ed. Retrieved February 6, 2016, from http://www.econlib.org/library/Enc/RationalExpectations.html
Schlueter, S. (2010). A long–term/short–term model for daily electricity prices with dynamic volatility. Energy Economics , 32 (5), 1074–1081. http://dx.doi.org/10.1016/j.eneco.2010.06.008
Schwarz, H. G. & Lang, Ch. (2006). The rise in German wholesale electricity prices: fundamental factors, exercise of market power, or both? IWE Working Paper No. 2. Institute of Economics.
Shahram Fattahi Gakieh, M. A. (2008). Modeling Inflation Expectations: The Case of Iran. Retrieved February 10, 2016, from http://sundoc.bibliothek.uni-halle.de/diss-online/08/08H147/t1.pdf
Shepherd, B. (2012). When are adaptive expectations rational? A generalization. Economics Letters , 115 (1), 4–6. http://dx.doi.org/10.1016/j.econlet.2011.11.017
Singhal, D. & Swarup, K. S. (2011). Electricity price forecasting using artificial neural networks. International Journal of Electrical Power & Energy Systems , 33 (3), 550–555. http://dx.doi.org/10.1016/j.ijepes.2010.12.009
Skribans, V. & Balodis, M. (2016). Development of the Latvian energy sector competitiveness system dynamic model. 9th International Scientific Conference “Business and Management 2016”, Vilnius, Lithuania, May 12–13, 2016. Vilnius Gediminas Technical University, 2016. http://dx.doi.org/10.3846/bm.2016.12
Tan, Z., Zhang, J., Wang, J. & Xu, J. (2010). Day–ahead electricity price forecasting using wavelet transform combined with ARIMA and GARCH models. Applied Energy , 87 (11), 3606–3610. http://dx.doi.org/10.1016/j.apenergy.2010.05.012
Tanaka, M. (2009). Transmission–constrained oligopoly in the Japanese electricity market. Energy Economics , 31 (5), 690–701. http://dx.doi.org/10.1016/j.eneco.2009.03.004
Thiemer, A. (2007). Cobweb Models and Expectations. Retrieved February 10, 2016, from https://www.fh-kiel.de/fileadmin/data/wirtschaft/Dozenten/Thiemer__Andreas/MCD/cobweb_e.pdf
Vahidinasab, V., Jadid, S. & Kazemi, A. (2008). Day-ahead price forecasting in restructured power systems using artificial neural networks. Electric Power Systems Research , 78 (8), 1332–1342. http://dx.doi.org/10.1016/j.epsr.2007.12.001
Weron, R. & Misiorek, A. (2008). Forecasting Spot Electricity Prices: A Comparison of Parametric and Semiparametric Time Series Models. International Journal of Forecasting , 24 , 744–763. http://dx.doi.org/10.1016/j.ijforecast.2008.08.004
Weron, R. (2014). Electricity price forecasting: A review of the state-of-the-art with a look into the future. International Journal of Forecasting , 30 (4), 1030–1081. http://dx.doi.org/10.1016/j.ijforecast.2014.08.008
Downloads
Published
Issue
Section
License
Copyright (c) 2016 Viktorija Bobinaite, Jānis Zuters (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.