Deep Learning Algorithm Forecasting the Unemployment Rates in the Central European Countries

Authors

DOI:

https://doi.org/10.7250/eb-2024-0006

Keywords:

unemployment, forecasting, machine learning, random forest, multilayer perceptron

Abstract

The aim of this paper is to forecast the monthly unemployment rate’s time series using deep learning algorithms. Based on data from five Central European countries, we tested the forecasting performance of the ‘conventional’ Box–Jenkins methodology in comparison with three deep learning models: the CNN (Convolutional Neural Network), the MLP (Multilayer Perceptron) and the random forest algorithm. The MAPE, MAE, RRMSE, and MSE error tests were used for testing the forecasting results. In our results, the ARIMA model was outperformed by one of the deep learning algorithms in all cases. The medium-term predictions suggest that in the Central European area, unemployment will remain relatively high in the future.

References

Athey, S., & Imbens, G. W. (2019). Machine learning methods that economists should know about. Annual Review of Economics, 11, 685–725. https://doi.org/10.1146/annurev-economics-080217-053433 DOI: https://doi.org/10.1146/annurev-economics-080217-053433

Borghi, P. H., Zakordonets, O., & Teixeira, J. P. (2021). A COVID-19 time series forecasting model based on MLP ANN. Procedia Computer Science, 181, 940–947. https://doi.org/10.1016/j.procs.2021.01.250 DOI: https://doi.org/10.1016/j.procs.2021.01.250

Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32. https://doi.org/10.1023/a:1010933404324 DOI: https://doi.org/10.1023/A:1010933404324

Brownlee, J. (2018). Deep Learning for Time Series Forecasting: Predict the Future with MLPs, CNNs and LSTMs in Python. Machine Learning Mastery.

Celbiş, M. G. (2023). Unemployment in Rural Europe: A Machine Learning Perspective. Applied Spatial Analysis and Policy, 16, 1071–1095. https://doi.org/10.1007/s12061-022-09464-0 DOI: https://doi.org/10.1007/s12061-022-09464-0

Cervelló-Royo, R., & Guijarro, F. (2020). Forecasting stock market trend: a comparison of machine learning algorithms. Finance, Markets and Valuation, 6(1), 37–49. https://doi.org/10.46503/NLUF8557 DOI: https://doi.org/10.46503/NLUF8557

Chakraborty, T., Chakraborty, A. K., Biswas, M., Banerjee, S., & Bhattacharya, S. (2021). Unemployment Rate Forecasting: A Hybrid Approach. Computational Economics, 57(1), 183–201. https://doi.org/10.1007/s10614-020-10040-2 DOI: https://doi.org/10.1007/s10614-020-10040-2

Choudhary, M., Jain, S., & Arya, G. (2022). Classical Models vs Deep Leaning: Time Series Analysis. In: Sugumaran, V., Upadhyay, D., Sharma, S. (eds) Advancements in Interdisciplinary Research. AIR 2022. Communications in Computer and Information Science, vol 1738. Springer, Cham. https://doi.org/10.1007/978-3-031-23724-9_26 DOI: https://doi.org/10.1007/978-3-031-23724-9_26

Comert, M., & Yildiz, A. (2021). A novel artificial neural network model for forecasting electricity demand enhanced with population-weighted temperature mean and the unemployment rate. Turkish Journal of Engineering and Environmental Sciences, 6(2), 178–189. https://doi.org/10.31127/tuje.903876 DOI: https://doi.org/10.31127/tuje.903876

Davidescu, A. A., & Paul, A. (2021). Comparative Analysis of Different Univariate Forecasting Methods in Modelling and Predicting the Romanian Unemployment Rate for the Period 2021–2022. Entropy, 23(3), 325. https://doi.org/10.3390/e23030325 DOI: https://doi.org/10.3390/e23030325

Dritsaki, C. (2016). Forecast of Sarima models: Αn application to unemployment rates of Greece. American Journal of Applied Mathematics and Statistics, 4(5), 136–148. http://pubs.sciepub.com/ajams/4/5/1

Dritsakis, N., & Klazoglou, P. (2018). Forecasting unemployment rates in the USA using Box-Jenkins methodology. International Journal of Economics and Financial Issues, 8(1), 9–20.

Fernandes, P. O., Teixeira, J. P., Ferreira, J. J., & Azevedo, S. G. (2008). Modelling tourism demand: a comparative study between artificial neural networks and the Box-Jenkins methodology. Romanian Journal of Economic Forecasting, 5(3), 30–50. https://bibliotecadigital.ipb.pt/bitstream/10198/1042/1/revista_3_ISI.pdf

Flores, J. J., Graff, M., & Rodriguez, H. (2012). Evolutive design of ARMA and ANN models for time series forecasting. Renewable Energy, 44, 225–230. https://doi.org/10.1016/j.renene.2012.01.084 DOI: https://doi.org/10.1016/j.renene.2012.01.084

Floros, C. (2005). Forecasting the UK unemployment rate: model comparisons. International Journal of Applied Econometrics and Quantitative Studies, 2(4), 57–72.

Ge, C. (2019, June). A LSTM and graph CNN combined network for community house price forecasting. In 2019 20th IEEE International Conference on Mobile Data Management (MDM). Hong Kong. https://doi.org/10.1109/mdm.2019.00-15 DOI: https://doi.org/10.1109/MDM.2019.00-15

Gogas, P., Papadimitriou, T., & Sofianos, E. (2022). Forecasting unemployment in the euro area with machine learning. Journal of Forecasting, 41(3), 551–566. https://doi.org/10.1002/for.2824 DOI: https://doi.org/10.1002/for.2824

Gupta, R., Pierdzioch, C., & Salisu, A. A. (2022). Oil-price uncertainty and the U.K. unemployment rate: A forecasting experiment with random forests using 150 years of data. Resources Policy, 77, 102662. https://doi.org/10.1016/j.resourpol.2022.102662 DOI: https://doi.org/10.1016/j.resourpol.2022.102662

Haq, A. U., Zeb, A., Lei, Z., & Zhang, D. (2021). Forecasting daily stock trend using multi-filter feature selection and deep learning. Expert Systems with Applications, 168, 114444. https://doi.org/10.1016/j.eswa.2020.114444 DOI: https://doi.org/10.1016/j.eswa.2020.114444

Katris, C. (2020). Prediction of unemployment rates with time series and machine learning techniques. Computational Economics, 55(2), 673–706. https://doi.org/10.1007/s10614-019-09908-9 DOI: https://doi.org/10.1007/s10614-019-09908-9

Khashei, M., & Hajirahimi, Z. (2019). A comparative study of series arima/mlp hybrid models for stock price forecasting. Communications in Statistics-Simulation and Computation, 48(9), 2625–2640. https://doi.org/10.1080/03610918.2018.1458138 DOI: https://doi.org/10.1080/03610918.2018.1458138

Kuhn, M., & Johnson, K. (2013) Applied Predictive Modeling. Springer. DOI: https://doi.org/10.1007/978-1-4614-6849-3

Kunaschk, M., & Lang, J. (2022). Can algorithms reliably predict long-term unemployment in times of crisis? Evidence from the COVID-19 pandemic (No. 8/2022). IAB-Discussion Paper. https://doi.org/10.48720/IAB.DP.2208

Kurita, T. (2010). A Forecasting Model for Japan’s Unemployment Rate. Eurasian Journal of Business and Economics, 3(5), 127–134.

Kütük, Y., Güloğlu, B. (2019). Prediction of transition probabilities from unemployment to employment for Turkey via machine learning and econometrics: a comparative study. DergiPark (Istanbul University). https://dergipark.org.tr/tr/pub/jore/issue/44898/559016

Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324. https://doi.org/10.1109/5.726791 DOI: https://doi.org/10.1109/5.726791

Li, Y., Stasinakis, C., & Yeo, W. M. (2022). A hybrid XGBoost-MLP model for credit risk assessment on digital supply Chain Finance. Forecasting, 4(1), 184–207. https://doi.org/10.3390/forecast4010011 DOI: https://doi.org/10.3390/forecast4010011

Longhi, S., Nijkamp, P., Reggianni, A., & Maierhofer, E. (2005). Neural Network Modeling as a Tool for Forecasting Regional Employment Patterns. International Regional Science Review, 28(3), 330–346. https://doi.org/10.1177/0160017605276187 DOI: https://doi.org/10.1177/0160017605276187

Madaras, S. (2018). Forecasting the regional unemployment rate based on the Box-Jenkins methodology vs. the Artificial Neural Network approach. Case study of Brașov and Harghita counties. Forum on Economics and Business, 21(135), 66–78.

Mahipan, K., Chutiman, N., & Kumphon, B. (2013). A Forecasting Model for Thailand’s Unemployment Rate. Modern Applied Science, 7(7). http://doi.org/10.5539/mas.v7n7p10 DOI: https://doi.org/10.5539/mas.v7n7p10

Matloff, N. (2017). Statistical regression and classification: from linear models to machine learning. CRC Press. DOI: https://doi.org/10.1201/9781315119588

Mirete-Ferrer, P. M., Garcia-Garcia, A., Baixauli-Soler, J. S., & Prats, M. A. (2022). A Review on Machine Learning for Asset Management. Risks, 10(4), 84. https://doi.org/10.3390/risks10040084 DOI: https://doi.org/10.3390/risks10040084

Montgomery, A. L., Zarnowitz, V., Tsay, R. S., & Tiao, G. C. (1998). Forecasting the US unemployment rate. Journal of the American Statistical Association, 93(442), 478–493. https://doi.org/10.1080/01621459.1998.10473696 DOI: https://doi.org/10.1080/01621459.1998.10473696

Moon, J., Kim, Y., Son, M., & Hwang, E. (2018). Hybrid short-term load forecasting scheme using random forest and multilayer perceptron. Energies, 11(12), 3283. https://doi.org/10.3390/en11123283 DOI: https://doi.org/10.3390/en11123283

Nabipour, M., Nayyeri, P., Jabani, H., Mosavi, A., Salwana, E., & Shahab, S. (2020). Deep Learning for Stock Market Prediction. Entropy , 22(8), 840. https://doi.org/10.3390/e22080840 DOI: https://doi.org/10.3390/e22080840

Ncibi, K., & Gasmi, F. (2022). Comparative study between the FLANN model and the MLP model in the stock market forecast: case of S & P 500. Journal of Positive School Psychology, 6(6), 44–52.

Nhose, B., Mulaudzi, R., & Ajoodha, R. (2023). A CNN-Based Model to Forecast the South African Unemployment Rate. Proceedings of International Conference on Communication and Computational Technologies, 67–79. https://doi.org/10.1007/978-981-19-3951-8_6 DOI: https://doi.org/10.1007/978-981-19-3951-8_6

Ou-Yang, C., Chou, S.-C., & Juan, Y.-C. (2022). Improving the Forecasting Performance of Taiwan Car Sales Movement Direction Using Online Sentiment Data and CNN-LSTM Model. NATO Advanced Science Institutes Series E: Applied Sciences, 12(3), 1550. https://doi.org/10.3390/app12031550 DOI: https://doi.org/10.3390/app12031550

Patel, J., Shah, S., Thakkar, P., & Kotecha, K. (2015). Predicting stock and stock price index movement using Trend Deterministic Data Preparation and machine learning techniques. Expert Systems with Applications, 42(1), 259–268. https://doi.org/10.1016/j.eswa.2014.07.040 DOI: https://doi.org/10.1016/j.eswa.2014.07.040

Proietti, T. (2003). Forecasting the US unemployment rate. Computational Statistics & Data Analysis, 42(3), 451–476. https://doi.org/10.1016/S0167-9473(02)00230-X DOI: https://doi.org/10.1016/S0167-9473(02)00230-X

Probst, P., & Boulesteix, A. L. (2017). To tune or not to tune the number of trees in random forest. The Journal of Machine Learning Research, 18(1), 1–18.

Sezer, O. B., Gudelek, M. U., & Ozbayoglu, A. M. (2020). Financial time series forecasting with deep learning: A systematic literature review: 2005–2019. Applied soft computing, 90, 106181. https://doi.org/10.1016/j.asoc.2020.106181 DOI: https://doi.org/10.1016/j.asoc.2020.106181

Tilo, B., Mulaudzi, R., & Ajoodha, R. (2023). The Effects of Feature Selection on the Forecast Accuracy of the South African Unemployment Rate. Proceedings of International Conference on Communication and Computational Technologies, 667–680. https://doi.org/10.1007/978-981-19-3951-8_50 DOI: https://doi.org/10.1007/978-981-19-3951-8_50

Tsay, R. S. (2005). Analysis of Financial Time Series. John Wiley & Sons. DOI: https://doi.org/10.1002/0471746193

Tyralis, H., & Papacharalampous, G. (2017). Variable selection in time series forecasting using random forests. Algorithms, 10(4), 114. https://doi.org/10.3390/a10040114 DOI: https://doi.org/10.3390/a10040114

Weinblat, J. (2018). Forecasting European high-growth Firms - A Random Forest Approach. Journal of Industry, Competition and Trade, 18(3), 253–294. https://doi.org/10.1007/s10842-017-0257-0 DOI: https://doi.org/10.1007/s10842-017-0257-0

Yamacli, D. S., & Yamacli, S. (2023). Estimation of the unemployment rate in Turkey: A comparison of the ARIMA and machine learning models including Covid-19 pandemic periods. Heliyon, 9(1), e12796. https://doi.org/10.1016/j.heliyon.2023.e12796 DOI: https://doi.org/10.1016/j.heliyon.2023.e12796

Yoon, J. (2021). Forecasting of Real GDP Growth Using Machine Learning Models: Gradient Boosting and Random Forest Approach. Computational Economics, 57(1), 247–265. https://doi.org/10.1007/s10614-020-10054-w DOI: https://doi.org/10.1007/s10614-020-10054-w

Zhang, C., Pan, X., Li, H., Gardiner, A., Sargent, I., Hare, J., & Atkinson, P. M. (2018). A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification. ISPRS Journal of Photogrammetry and Remote Sensing, 140, 133–144. https://doi.org/10.1016/j.isprsjprs.2017.07.014 DOI: https://doi.org/10.1016/j.isprsjprs.2017.07.014

Zhao, Z., & Hou, G. (2022). U.S. unemployment rate prediction by economic indices in the COVID-19 pandemic using neural network, random forest, and generalized linear regression. In Biomedical and Business Applications Using Artificial Neural Networks and Machine Learning (pp. 263–284). IGI Global. https://doi.org/10.4018/978-1-7998-8455-2.ch010 DOI: https://doi.org/10.4018/978-1-7998-8455-2.ch010

Downloads

Published

30.04.2024

How to Cite

Madaras, S. (2024). Deep Learning Algorithm Forecasting the Unemployment Rates in the Central European Countries. Economics and Business, 38, 86-102. https://doi.org/10.7250/eb-2024-0006